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Information Retrieval (IR) Models 2021
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Longstanding debate 2021
Dense Model Sparse Model
]R768 RBOI{—SOOI{
* Semantic » Exact Match

* Implicit Matching » Explicit Matching

* '‘Representation Based' * Interaction Based'’

» Approximate NN Search * Inverted Index

Now Dense > Sparse

How can one learn a state of the art sparse retrieval model?
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SPLADE 202

A spork that is sharp along one edge, or N\,
both edges, enabling it to be used as

a knife, a fork and a spoon. \

\\
Ny



https://en.wiktionary.org/wiki/spork
https://en.wiktionary.org/wiki/knife
https://en.wiktionary.org/wiki/fork
https://en.wiktionary.org/wiki/spoon
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BM25, Robertson et al., 1994 2021

Hypothesis:
word frequencies follow a two Poisson Mixture

tf (w)
). Fom +K /PP

win qg”d

The backbone of search engines for several decades
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Classical Rerankers 2021

Rerankers: Learning-to-rank methods:
- LambdaMart, RankNET, GBDT on handcrafted features

2010's: NN models with word embedding (word2vec)

« Representation based e.g. DSSM
o Interaction based e.g. DRMM, K-NRM, DUET
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MSMARCO and TREC 2021

Information Retrieval Competition since 90's
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BERT Reranker: BERT (Cat)
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FT with various
learning to rank loss
on the Top 1k

documents returned
by BM25

Schema credit: Lin
Nogueira, Yates in
Pretrained Transformers
for Text Ranking.: BERT and
Beyond



Pretrained LMs for First Retriever and Rerankers
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A Bi-Encoder First Stage Ranker 2021

p(n(q), n(d))
n(q) n(d)

. ¥ - >
g —

query text

From Inverted index to dense indexing technique (ANN)

Schema credit: Lin Nogueira, Yatesin
Pretrained Transformers for Text Ranking. BERT and Beyond
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First Ranker Comparison: MS-Marco and 202
TRECDL'19

MRR@10 NDCG@10
MSMARCO TREC DL19
Dev
BM25 19.4 50.1
docTh 27.7 64.2
Siamese Bert 31.2 63.7

TAS-B 34,7 71.7
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Research Questions 2021

How to reduce computational cost Archi-

Distillation
tecture

e.g. quantization, distillation of
reranker to a siamese

How better train these models
e.d. multi-stage training, label noise

Multi-
Stage
Training

Ranking
Loss

Generalization?
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BEIR Benchmark: Zero Shot Evaluation, Neurips'21 2021

" BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of
Information Retrieval Models

Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava, Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, lechnische Universitiat Darmstadt
WWw.ukp.tu-darmstadt.de

Figure 1: An overview of the diverse tasks and datasets present in BEIR.
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BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of
Information Retrieval Models

Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava, Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science, lechnische Unmiversitiat Darmstadt
WWw.ukp.tu-darmstadt.de

Pause a moment
What's your bet of this benchmark ?
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BEIR Conclusion 2621

BM2E | Colbert | TAS-B “Our results show BM25 is a robust baseline
- In contrast, Dense-retrieval models [ ---]
45.3 45.6 43.7 often underperform other approaches,

highlighting the considerable room for
improvement in their generalization
Rerankers transfer well capabilities *

Standard siamese don't
Colbert ok too
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orpert

And the important role of Exact Match - that will
guide us to the design of SPLADE
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A Research Question 2021

Pretrained LMs

IR Theory

IDF Interpretation

Work Better
What do they do?

Axiomatic Methods
Relevance Estimation

Is IR Theory still useful?
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ColBERT (SIGIR20, Katthab et al.)

Delayed token-level interactions between query and doc (offline doc
indexing)

Query Encoder, £, Document Encoder, f,

Offline Indexing

Query Document

Works surprisingly welll Resembles a TFIDF-like formula



ColBERT Matching Process

Query Encoder, f,

Query

Document Encoder, f)

Offline Indexing

Document
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S, g := max E,. - FE
q.d Z . q9i " “d;
E J

- Statistics of scores for
different terms on MS-MARCO

- Exact & Soft matches



Methodology - distribution of term scores

[all the doc to re-ran

Distribution of scores for each query term
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Methodology - exact and soft distributions

exact match

Tl

soft match

[county]
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2 distributions of scores for each query term
e exactcase
e SoOftcase

Note ~» exact cosine sim !|= 1 because embeddings are contextualized
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n: 707 n: 947

in [SEP]
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Exact/Soft matching patterns

Neural models ~ soft-matching
Exact matching is still a critical component of IR systems!

Does ColBERT capture exact match? How?
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Exact/Soft matching patterns: A
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2 - Exact/Soft matching patterns

3 I pre-trained only
B fine-tuned
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Exact Match: How ?

Colbert can distinguish terms for which exact match is important !

But how is it able to promote exact match from the contextualized

embeddings ?
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Exact Match in ColBERT: How ? 01

s(q,d) = Zieq MaXcd Eg; Eq,
Hypothesis

. for important terms, contextual embeddings vary less, hence ColBERT
will tend to select the same term in documents (cosine sim close to 7)

« terms carrying less information tend to absorb more the context in
sequences, hence their embeddings vary more
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Hypothesis: content words have contextualized
embeddings pointing in the same direction

[...] mango 1s an exotic fruit [...]
[...] mango 1s now cultilivated 1n most
frost—-free tropical [...]

bla bla bla 1s mango


https://en.wikipedia.org/wiki/Frost
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Hypothesis: frequent words have contextualized
embeddings pointing in different directions

[...] mango 1s an exotic fruit
[...]

[...] mango 1s now cultivated in
most frost-free tropical [...]

Bla bla 1s bla


https://en.wikipedia.org/wiki/Frost
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Spectral analysis of contextual term embeddings

092
0.10
0.06
\_ Y, o _/ }\1
SVD > A
~ I
025
0.19
_ p . 0.16

High value means that embeddings point in the same direction
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Spectral analysis of contextual term embeddings

0.3; M pre trained only
B fine tuned

0.30

Pearsonr=0.77

[0:2] 12:4] 14:6] 16:8] 18:10] ]10:[
subword IDF bins



A White Box Analysis of ColBERT

ColBERT learns a notion of term importance
correlated with IDF

Exact match remains a key component and is
promoted for terms with high IDF

We can benefit from IR priors!
Modelling Exact Match is important:
- Design of a sparse retrieval model SPLADE
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SPLADE



BM25

sparse
TF-IDF

Vanilla BERT (2019)
RE-RANKING

Siamese BERT (2019)
dense embeddings +
ANN for retrieval

Improved samplin%ﬂﬂﬂ)

ANCE
RocketQA
TAS-balanced

dense

approaches

ColIBERT (2020)
token-level interactions
ANN for each token
large collection size!

Distillation (2020)
MarginMSE
TCT-ColBERT

-H_P

DeepCT (2019)

BERT based term re-
weighting (regression)
store weights in standard
inverted index

BM25

doc2query/docT5 (2019)
seqg2seq document
expansion (predicting q for d)
new collection: index and

Sparse expansion

(2020/2021)
SparTerm
SPARTA

predict importance for each
term in voc space
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First Stage Retriever: SPLADE 2021

Query

~

BM25

SPLADE

~

TS

/

Top 1k Docs

Goals:

Infer sparse representations directly

SPLADE:

- Supervised query and document
expansion

- Sparse Reqgularization

- Controllable Sparsity# previous approach
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BERT is already able to perform P(word|h;)
document expansion naturally

Reuse the MLM head instead of
throwing it away!




No CLS pooling but projecting in BERT vocabulary
(with the MLM head)

Wij = transform(h,-)TEj + bj

w; = max log (1 + ReLU(w;;))

l1EL
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Representation W digit
in BERT voc space

|V| = 30522

>stock

1

log(1+ReLU(X))
\

token-level
rep in voc

9
’I\

d=30522

BERT

[CLS] binary

Tokenizer

docid: 7130867 1\

Binary (or base-2) a numeric system that only uses two digits — O
and 1. Computers operate in binary, meaning they store data and
perform calculations using only zeros and ones.
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Ranking Loss
INfONCE

es(qi’d;)

Lrank—IBN — = log el AT ol A — s(asd= )
eS(qi,d;_) 4+ eS(qi,di) + Z] es(qiadi,j)
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* Log Activation
« FLOPS Regularization (ICLR'20):
directly optimize a proxy for the number of FLOPS

Main ldea:
'Count the number of activations of a word in a
batch’

N
frLOPS = Z a; = Z % Z w](.d")

JEV JjeV =1

2
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Ranking Loss Sparsity

* Log Activation
* FLOPS Regqularization (ICLR'20):
directly optimize a proxy for the number of FLOPS

05(qi.d7)

N 2
_ 9 1 (di)
e5(q1:d7) y s(qid;) 4 2 e*(71:1) tFLOPS = Z 4j = Z N Z Y
J 1T LN L™
jev jev =1

-[rrank—IBN — = log

L =L,ank-1BN + AqLreg + AdLreg
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Figure 1: Performance vs FLOPS for SPLADE models trained
with different regularization strength A on MS MARCO.
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Figure 1: Performance vs FLOPS for SPLADE models trained
with different regularization strength A on MS MARCO.
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MRR@10 NDCG@10
MSMARCO Dev TREC DL19

BM25 19.4 50.1
docTh 27.7 64.2
Siamese Bert 31.2 63.7
TAS-B 34.7 71.7
Distill-SPLADE 36.8 72.9

The first Sparse Model that rivals Dense Siamese BERT Models
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original document (doc ID: 7131647)

if (1.2) bow (2.56) legs (1.18) s caused (1.29) by (0.47) the bone (1.2) alignment
(1.88) issue (0.8/7,)’%1&&&-yeﬁ-may-be able (0.29) e correct(1.37) through (0.43)
bow legs correction (1.05) exereises. fe&d-mefe-hefe;'ff bow legs is caused by

the bone gzh’gnment issue than you may be able/to’ correct through bow legs

correctioh exercises.

o~
/ .

/
.,/ bad expansion terms ! €Xpansion terms

stemming effect,’
-~

good expansion terms

(g 162 farrow]o 7 fexercise]0.64) fbones]0.63) fproblem o 41

0.35) (happen, 0.29) (create, 0.22) (can, 0.14) (worse, 0.14) (effect, 0.08)
0.06) (remove, 0.03)
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BEIR Conclusion 2621

BM2E | Colbert | TAS-B “Our results show BM25 is a robust baseline
- In contrast, Dense-retrieval models [ ---]
45.3 45.6 43.7 often underperform other approaches,

highlighting the considerable room for

improvement in their generalization
Rerankers transfer well

Colbert ok too
Standard siamese don't

capabilities ”
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SPLADE on BEIR (Zero Shot Benchmark) 2021

Does SPLADE generalize well to other collections?
BEIR Benchmark: NDCG@10 for available collections

TAS-B : SOTA (August'21) Dense Bi-Encoder Retrieval Model

BM25 Colbert TAS-B SPLADE Distill-
Splade

50.6
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SPLADE, an efficient, FLOPS- controllable, interpretable, first
stage retriever, that transfers well

https://github.com/naver/splade

Future work?


https://github.com/naver/splade
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Multiple positions in the Search
and Recommendation team at
NAVER LABS Europe

NAVER LABS Europe, Grenoble, France

https://europe.naverlabs.com/careers/
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